DE NOVO ASSEMBLY

SSEMBLY VALIDATION

FEATURES AND FRCURVE

Bioinformatics Seminars Series: Assembly Validation

Francesco Vezzi

KTH: ROYAL INSTITUTE OF TECHNOLOGY SCILIFE LAB STOCKHOLM

ROYAL INSTITUTE OF TECHNOLOGY

INTRO	DU	СТ	ΊC	N
000				

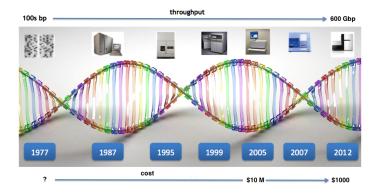
DE NOVO ASSEMBLY

SSEMBLY VALIDATION

Features and FRCurve

SUMMARY

INTRODUCTION

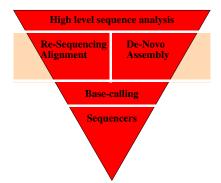

- The need of validation
- **2** De Novo Assembly
- **3** Assembly Validation
- 0 Features and FRCurve
 - Features
 - FRCurve
 - FRC^{bam}

De Novo Assembly

Assembly Validation

FEATURES AND FRCURVE

THE SEQUENCING (R) evolution


In 2012 Illumina will release a new instrument able to sequence an individual Human genome for **1000\$**

DE NOVO ASSEMBLY

Assembly Validation

FEATURES AND FRCURVE

Genome Analysis Pyramid

Every step needs validation procedures and quality controls.

De Novo Assembly

SSEMBLY VALIDATION

The need of evaluation

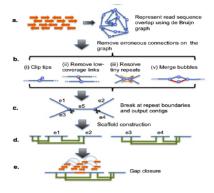
J.R. MILLER

No algorithm or implementation solves the WGS assembly problem. Each of the various software packages was published with claims about its own superiority.

RECENT CRITICS

- Beware of mis-assembled genomes (Sanger et al. 2005)
- Limitations of NGS genome sequence assembly (Alkan et al. 2011)
- Assembly: the good, the bad, the ugly (Birney et al. 2011)

EVALUATION EFFORTS:


- Assemblathon 1, 2 (maybe 3?)
- GAGE: benchmark dataset

DE NOVO ASSEMBLY

ASSEMBLY VALIDATION

FEATURES AND FRCURVE

DE NOVO ASSEMBLY: THE PROBLEM

Solving Strategies

- Hash Based Method
- Overlap Layout Consensus (OLC)
- De-Bruijn Graph (DBG)

Why so difficult?

- NP complete;
- Short reads;
- Repeats;

DE NOVO ASSEMBLY

ASSEMBLY VALIDATION

FEATURES AND FRCURVE

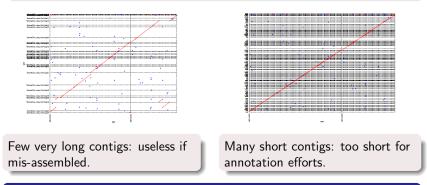
AVAILABLE ASSEMBLERS

Name	Algorithm	Author	Year
Arachne WGA	OLC	Batzoglou, S. et al.	2002 / 2003
Celera WGA / CABOG	OLC	Myers, G. et al.; Miller G. et al.	2004 / 2008
Minimus (AMOS)	OLC	Sommer, D.D. et al.	2007
Newbler	OLC	454/Roche	2009
Edena	OLC	Hernandez D., et al.	2008
MIRA, miraEST	OLC	Chevreux, B.	1998 / 2008
TIGR	Greedy	TIGR	1995 / 2003
Phusion	Greedy	Mullikin JC, et al.	2003
Phrap	Greedy	Green, P.	2002 / 2003 / 2008
CAP3, PCAP	Greedy	Huang, X. et al.	1999 / 2005
Euler	DBG	Pevzner, P. et al.	2001 / 2006
Euler-SR	DBG	Chaisson, MJ. et al.	2008
Velvet	DBG	Zerbino, D. et al.	2007 / 2009
ALLPATHS	DBG	Butler, J. et al.	2008
ABySS	DBG	Simpson, J. et al.	2008 / 2009
SOAPdenovo	DBG	Ruiqiang Li, et al.	2009
SUTTA	B&B	Narzisi, G, Mishra B.	2010
SHARCGS	Greedy	Dohm et al.	2007
SSAKE	Greedy	Warren, R. et al.	2007
VCAKE	Greedy	Jeck, W. et al.	2007
QSRA	Greedy	Douglas W. et al.	2009
Sequencher	-	Gene Codes Corporation	2007
SeqMan NGen	-	DNASTAR	2008
Staden gap4 package	-	Staden et al.	1991 / 2008
NextGENe	-	Softgenetics	2008
CLC Genomics Workbench	-	CLC bio	2008 / 2009
CodonCode Aligner	-	CodonCode Corporation	2003 / 2009

SHORT READS ASSEMBLERS

More than 20 published assemblers:

• How can we judge assembly quality?


DE NOVO ASSEMBLY

Assembly Validation

FEATURES AND FRCURVE

N50 and Contig size

Given *M* contigs of size $c_1, c_2, ..., c_M$, N50 is defined as the largest number *L* such that the combined length of all contigs of length $\geq L$ is at least 50% of the total length of all contigs.

Problem

Emphasize only size without capturing quality!!!

DE NOVO ASSEMBLY

Assembly Validation

FEATURES AND FRCURVE

COUNTING ERRORS

- Typically used for NGS data;
- Count the number of mis-assembled contigs by alignments to the reference genome;
- Problem: error types are not weighted accordingly

DE NOVO ASSEMBLY

Assembly Validation

FEATURES AND FRCURVE

VISUALIZATION TOOLS

- Hawkeye: Schatz et al., Genome Biology 2007;
- Good for inspection;

PROBLEM

Lack of automation!!

]	_	_	AI - Inserts	_	_	_		
jbraries Eeatures Mat								
Zoom VZo	om	— Happy Dist	ance: 2	1	D:	EID:		
	Scaffold:0	Contig: 7 P	osition: 6921	28 Viewin	g: 734464 -	831506		
740K 750K	760K	770K	780K	790K	800K	810K	820K	83
Construction of the Association				and the second	,			_
								<u></u>
			a star		مريها	,	بطيمه	-
			-					
				-	÷	_		
				_	1.00			÷.
					-			÷.,
	-				_	<u> </u>		
						-	-	
								1
		-			. 1			
	2							
			-					
			-	-	-			
		111						
780080] Feature EID: Co	nment:HIGH_S	NP 68 21.84 T	vpe:P 1779348	7808111 1463	bo			

De Novo Assembly

Assembly Validation

Features and FRCurve

A WISH LIST...

IDEAL METRIC

- A single value or function;
- Capture trade-off between quality and contiguity;
- Use long-range data (mate pairs, physical maps, etc.);
- No need for a reference;
- Easy to understand;

INTRO	DUC	TIC)N
000			

DE NOVO ASSEMBLY

ASSEMBLY VALIDATION

FEATURES

N50, MEAN CONTIG, MAX CONTIG

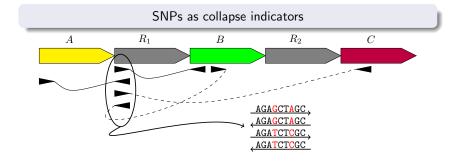
Emphasize only size, while nothing (or almost nothing) is said about how correct the assemblies are.

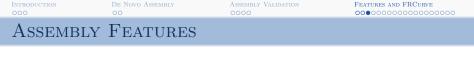
Philippy et al.

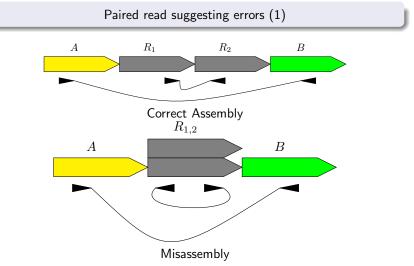
Genome assembly forensics: finding the elusive mis-assembly

FEATURES

amosvalidate pipeline returns for each contig its "features" – contigs or contig's fragment containing several different features suggest their "mis-assemblies" (i.e., errors).

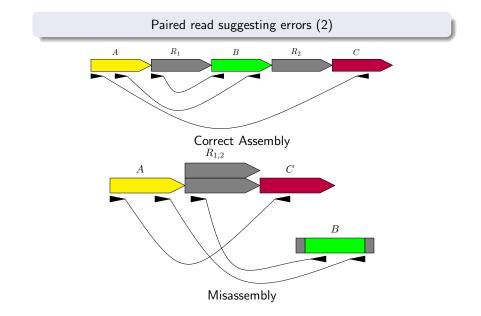



- BREAKPOINT: left over reads partially align;
- OMPRESSION: possible repeat collapse;
- STRETCH: possible repeat expansion;
- LOW_GOOD_CVG: normal oriented reads but at low coverage;
- HIGH_NORMAL_CVG: normal oriented reads but at high coverage;
- HIGH_LINKING_CVG: reads with mate in another scaffold;
- HIGH_SPANNING_CVG: mate in another contig;
- S HIGH_OUTIE_CVG: incorrectly oriented mates $(\rightarrow \rightarrow, \leftarrow \rightarrow)$;
- HIGH_SINGLEMATE_CVG: single reads (mate not present anywhere);
- HIGH_READ_COVERAGE: unexpected high local read coverage;
- HIGH_SNP: SNP with high coverage;
- Big KMER_COV: Problematic k-mer distribution.


If a contig is found to contain several features, then a likely explanation could be found in the contig's mis-assemblies.

INTRODUCTION DE NOVO ASSEMBLY ASSEMBLY VALIDATION 000 00 0000 Features and FRCurve

ASSEMBLY FEATURES

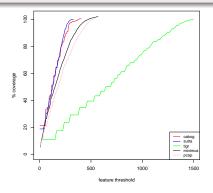


DE NOVO ASSEMBLY

ASSEMBLY VALIDATION

Features and FRCurve

Assembly Features



Introduction
COODe Novo Assembly
OAssembly Validation
COOOFeatures and FRCurve
COOOFRCURVE
(NARZISI AND MISHRA, 2011)

How can the feature counting allow us to compare and judge different assemblies/assemblers?

How can the feature counting allow us to compare and judge different assemblies/assemblers?

The Feature Response Curve (FRCurve) characterizes the sensitivity (*coverage*) of the sequence assembler as a function of its discrimination threshold (*number of features*).

DE NOVO ASSEMBLY

Assembly Validation

Features and FRCurve

STUDYING THE FEATURES

- A lot of features, are all necessary?
- Some features are deeply correlated
- In general features have high Sensitivity but low Specificity
- Are features "more informative" than standard measures?

PCA AND ICA

Use multivariate techniques to understand how features are correlated (PCA) and what are the most important (independent) ones (ICA).

Experiments

20 genomes, 10 assemblers, real and simulated data: more than 500 assemblies

De Novo Assembly

ASSEMBLY VALIDATION

Features and FRCurve

PCA AND ICA

SANGER/ILLUMINA

- Sanger
 - 20 real projects assembled with 5 different assemblers
 - 20 simulated coverages assembled with 4 different assemblers
- Illumina:
 - 5 real projects assembled with 5 different assemblers
 - 20 simulated genomes assembled with 4 different assemblers
 - PCA and ICA on 11 features plus N50 and NUM_CTG
 - Easy work with Sanger... a nightmare with Illumina:
 - afg/bank is required to compute features
 - some tool perform scaffolding, others not
 - no standard datasets, assemblers highly dependent on parameters

DE NOVO ASSEMBLY

SSEMBLY VALIDATION

Features and FRCurve

PCA: REAL DATASETS

	L	ong Rea	ds	Short Reads		
FEATURES	PC1	PC2	PC3	PC1	PC2	PC3
BREAKPOINT	0.29	-0.14	-0.21	-	-	-
COMPRESSION	0.32	0.22	0.35	-0.28	-0.15	0.24
STRETCH	-0.06	0.08	0.27	-0.3	-0.11	0.32
HIGH_NORMAL_CVG	-0.1	0.4	0.21	0.12	0.44	-0.09
HIGH_OUTIE_CVG	-0.07	0.56	-0.09	-0.32	-0.33	-0.29
HIGH_READ_COVERAGE	0.36	0.1	-0.13	-0.26	-0.3	-0.41
HIGH_SINGLEMATE_CVG	-0.01	0.27	-0.53	0.23	-0.26	-0.37
HIGH_SNP	0.05	-0.23	-0.13	-0.19	-0.05	-0.38
HIGH_SPANNING_CVG	0.28	0.38	0.31	-0.07	-0.38	0.12
KMER_COV	-0.03	0.37	-0.48	-0.08	-0.22	0.47
LOW_GOOD_CVG	0.5	-0.04	-0.02	0.41	-0.32	0.09
N50	-0.23	0.09	0.2	-0.48	0.08	0.1
NUM_CONTG	0.5	-0.03	-0.02	0.36	-0.41	0.12
cumulative variation	27%	44%	55%	26%	50%	63%

DE NOVO ASSEMBLY

ASSEMBLY VALIDATION

Features and FRCurve

PCA: SIMULATED DATASETS

	L	ong Rea	ds	5	Short Reads		
FEATURES	PC1	PC2	PC3	PC1	PC2	PC3	
BREAKPOINT	0.26	-0.38	-0.04	-	-	-	
COMPRESSION	-	-	-	0.32	0.20	0.33	
STRETCH	0.22	0.42	0.12	0.2	0.37	0.26	
HIGH_NORMAL_CVG	0.02	0.2	-0.44	0.1	0.13	-0.62	
HIGH_OUTIE_CVG	0.12	0.46	0.01	0.19	0.15	-0.536	
HIGH_READ_COVERAGE	0.36	0.21	-0.19	0.35	0.09	-0.01	
HIGH_SINGLEMATE_CVG	0.04	-0.07	-0.76	-0.11	-0.5	0.15	
HIGH_SNP	0.3	0.02	-0.18	0.37	0	-0.06	
HIGH_SPANNING_CVG	0.41	0.04	0	0.36	-0.24	-0.16	
KMER_COV	0.24	0.37	0.16	0.31	0.28	0.28	
LOW_GOOD_CVG	0.41	-0.28	0.04	0.34	-0.35	0.09	
N50	-0.27	0.01	-0.3	-0.19	0.25	0.02	
NUM_CONTG	0.39	-0.31	0.02	0.3	-0.42	0.03	
cumulativevariation	36%	59%	70%	43%	62%	75%	

DE NOVO ASSEMBL

Assembly Validation

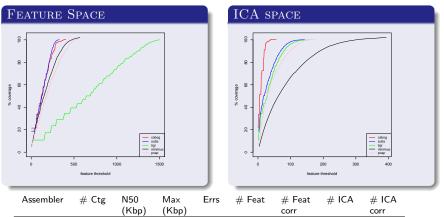
Features and FRCurve

COMPRESSION, HIGH_OUTIE_CVG, HIGH_SINGLEMATE_CVG, HIGH_READ_COVERAGE, KMER_COV, LOW_GOOD_CVG

ILLUMINA (REAL) ICA-FEATURES

COMPRESSION, LOW_GOOD_CVG, KMER_COV, HIGH_SPANNING_CVG, HIGH_OUTIE_CVG, CE_STRETCH

Illumina (Simulated) ICA-Features

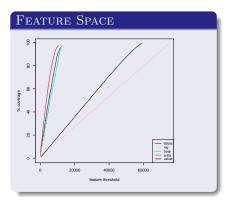

HIGH_READ_COVERAGE, HIGH_SNP, HIGH_NORMAL_CVG, HIGH_SPANNING_CVG, KMER_COV, CE_STRETCH

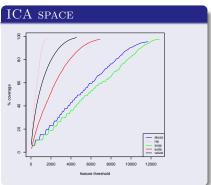
DE NOVO ASSEMBLY

Assembly Validation

FEATURES AND FRCURVE

LONG REAL READS: BRUCELLA SUIS


	//8				//	//	//	//	
		(Kbp)	(Kbp)			corr		corr	
cabog	41	265	711	24	375	24	45	18	
minimus	205	31	89	44	382	37	208	36	
pcap	91	69	194	50	455	57	94	41	
sutta	72	93	621	45	261	23	75	22	
tigr	69	111	357	31	1281	24	134	20	


DE NOVO ASSEMBLY

Assembly Validation

FEATURES AND FRCURVE

Short real reads: E. Coli $(130 \times)$

Assembler	# Ctg	N50	Max	Errs	# Feat	# Feat	# ICA	# ICA
		(Kbp)	(Kbp)			corr		corr
abyss	113	97	268	11	11804	119	11475	105
ray	194	58	140	17	74565	52	1701	30
soap	125	109	267	62	12254	174	12053	140
sutta	690	11	41	56	7949	140	5528	114
velvet	65	142	428	136	2156	26	131	2

DE NOVO ASSEMBLY

ASSEMBLY VALIDATION

FEATURES AND FRCURVE

PCA AND ICA RESULTS

PCA ANALYSIS

- Feature space redundant.
- Lack of precise read simulators.
- N50 bad quality predictor!!

ICA ANALYSIS

- Possibility to reduce feature space.
- Improved accuracy (less false positive).

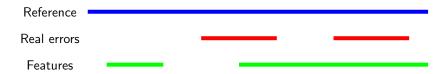
PROBLEMS

- FRC included in AMOS package:
 - based on amosvalidate package;
 - needs a bank, or afg output file
 - tool compatible with few (maybe 2) assemblers
- Features designed for Sanger data (*i.e.* leftovers);
- Features have high Sensitivity but low Specificity

DE NOVO ASSEMBLY

Assembly Validation

FEATURES AND FRCURVE


SENSITIVITY AND SPECIFICITY

SENSITIVITY

Sensitivity = True Positives True Positives+False Negatives

Specificity

 $Specificity = \frac{True \ Negatives}{True \ Negatives + False \ Positives}$

DE NOVO ASSEMBLY

Assembly Validation

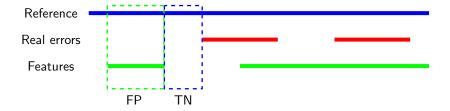
FEATURES AND FRCURVE

SENSITIVITY AND SPECIFICITY

SENSITIVITY

$$Specificity = \frac{True \ Negatives}{True \ Negatives + False \ Positives}$$

DE NOVO ASSEMBLY


Assembly Validation

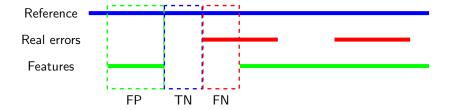
FEATURES AND FRCURVE

SENSITIVITY AND SPECIFICITY

SENSITIVITY

$$Specificity = \frac{True \ Negatives}{True \ Negatives + False \ Positives}$$

DE NOVO ASSEMBLY


Assembly Validation

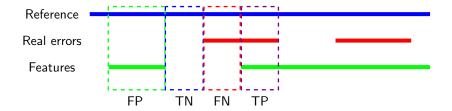
FEATURES AND FRCURVE

SENSITIVITY AND SPECIFICITY

SENSITIVITY

$$Specificity = \frac{True \ Negatives}{True \ Negatives + False \ Positives}$$

DE NOVO ASSEMBLY


Assembly Validation

FEATURES AND FRCURVE

SENSITIVITY AND SPECIFICITY

SENSITIVITY

$$Specificity = \frac{True \ Negatives}{True \ Negatives + False \ Positives}$$

INTRODUCTION	De Novo Assembly	Assembly Validation	Features and FRCurve
000	00	0000	000000000000000000000000000000000000000
-			

F'EATURES FROM ALIGNMENT

- NGS-based de novo assembler do not output layout
- Alignment only way to obtain an approximate layout:
 - alignment is a typical post-assembly procedure;
 - allows to design NGS-specific features (PE, MP)

FRC^{bam}

Read alignments (SAM/BAM format) and computes most important (ICA-independent) features:

- LOW_COV_AREA and HIGH_COV_AREA
- LOW_NORMAL_AREA and HIGH_NORMAL_AREA
- HIGH_SPANNING_AREA
- HIGH_SINGLE_AREA
- HIGH_OUTIE_AREA
- COMPRESSION and EXPANSION (CE statistics, Zimin et al.)

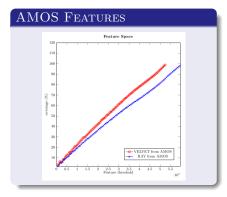
DE NOVO ASSEMBLY

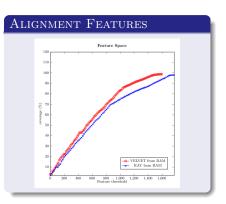
ASSEMBLY VALIDATION

Features and FRCurve

How to test?

- Need of data and references;
 - Which datasets can we use?
- Relationship between *amos*-based features and *alignment*-based features:
 - can we trust *alignment*-based features?
 - need of AMOS-compatible assemblers
- Test *alignment*-based features on new data:
 - Sensitivity/Specificity
 - Comparison with alignment based validation



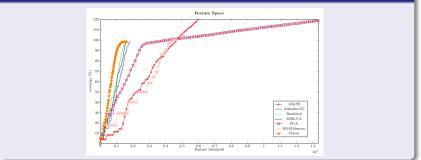

De Novo Assembly

Assembly Validation

FEATURES AND FRCURVE

GAGE: STAPHYLOCOCCUS AUREUS

# Ctg	g N50		ERF	RORS	AM	1OS	BA	M
	(Kbp) inser	trans	breakpoints	sens	spec	sens	spec
303	21.6	295	288	830	0.91	0.36	0.93	0.56
438	10.9	270	441	1106	0.99	0.22	0.90	0.47
-				% AMOS feat				
	-		-					
	303	(Kbp 303 21.6	(Kbp) inser 303 21.6 295 438 10.9 270 % Real Ray 2.55	(Kbp) inser trans 303 21.6 295 288 438 10.9 270 441 % Real Errors Ray 2.5%	(Kbp) inser trans breakpoints 303 21.6 295 288 830 438 10.9 270 441 1106 % Real Errors % AMOS feat Ray 2.5% 65.7%	(Kbp) inser trans breakpoints sens 303 21.6 295 288 830 0.91 438 10.9 270 441 1106 0.99 % Real Errors % AMOS feat % BA Ray 2.5% 65.7% 45	(Kbp) inser trans breakpoints sens spec 303 21.6 295 288 830 0.91 0.36 438 10.9 270 441 1106 0.99 0.22 % Real Errors % AMOS feat % BAM feat Ray 2.5% 65.7% 45%	(Kbp) inser trans breakpoints sens spec sens 303 21.6 295 288 830 0.91 0.36 0.93 438 10.9 270 441 1106 0.99 0.22 0.90 % Real Errors % AMOS feat % BAM feat Ray 2.5% 65.7% 45%


DE NOVO ASSEMBLY

Assembly Validation

FEATURES AND FRCURVE

GAGE: STAPHYLOCOCCUS AUREUS

ALIGNMENT FEATURES

			ERRORS BAN					
	# Ctg	N50	Misjoin &	Chaff	Dupl. Ref	SNPs &	sens	spec
		(Kbp)	Indels > 5	(%)	(%)	Indels < 5		
ABySS	302	29.2	19 (10+9)	66.00	23.30	278	0.91	0.32
ALLPATHS	60	96.7	20 (8+12)	0.03	0.03	83	0.88	0.52
BAMBUS2	109	50.2	190 (26+164)	0	0.01	84	0.90	0.53
MSR-CA	94	59.2	34 (24+10)	0.02	0.83	214	0.87	0.56
SGA	252	4.0	10 (8+2)	21.38	0.03	34	0.95	0.20
SOAP	107	288.2	65 (34+31)	0.35	1.44	271	0.96	0.22
Velvet	162	48.4	42 (28+14)	0.45	0.10	223	0.88	0.61

INTRODUCTION	De Novo Assembly	Assembly Validation	Features and FRCurve
000	00	0000	000000000000000000000000000000000000000
CONCLU	SIONS		

FEATURES AND FRCURVE

- Features important instrument for assembly/assemblers evaluation.
- FRCurve useful instrument to gauge assembler performances:
 - one "simple" function;
 - reference free;
 - easy to improve

FRC^{bam}

- overcomes FRCurve/AMOS limits;
- possibility to develop NGS-based features;

WHAT'S NEXT?

- improve features sensitivity and specificity;
- design application specific features (Fosmid pools, metagenomics, *etc.*);
- (sequencing) technology agnostic features (physical maps);

DE NOVO ASSEMBLY

ASSEMBLY VALIDATION

FEATURES AND FRCURVE

THAT'S ALL FOLKS

Many Thanks to

- Prof. Lars Arvestad
- Prof. Bud Mishra
- PhD Giuseppe Narzisi

THANKS FOR THE ATTENTION!