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Global Topology Analysis
of the Escherichia coli

Inner Membrane Proteome
Daniel O. Daley,1* Mikaela Rapp,1* Erik Granseth,2 Karin Melén,2

David Drew,1 Gunnar von Heijne1,2.

The protein complement of cellular membranes is notoriously resistant to
standard proteomic analysis and structural studies. As a result, membrane
proteomes remain ill-defined. Here, we report a global topology analysis of
the Escherichia coli inner membrane proteome. Using C-terminal tagging with
the alkaline phosphatase and green fluorescent protein, we established the
periplasmic or cytoplasmic locations of the C termini for 601 inner membrane
proteins. By constraining a topology prediction algorithm with this data, we
derived high-quality topology models for the 601 proteins, providing a firm
foundation for future functional studies of this and other membrane pro-
teomes. We also estimated the overexpression potential for 397 green fluo-
rescent protein fusions; the results suggest that a large fraction of all inner
membrane proteins can be produced in sufficient quantities for biochemical
and structural work.

Integral membrane proteins account for the

coding capacity of 20 to 30% of the genes in

typical organisms (1) and are critically im-

portant for many cellular functions. However,

owing to their hydrophobic and amphiphilic

nature, membrane proteins are difficult to

study, and they account for less than 1% of

the known high-resolution protein structures

(2). Overexpression, purification, biochem-

ical analysis, and structure determination are

all far more challenging than for soluble pro-

teins, and membrane proteins have rarely been

considered in proteomics or structural ge-

nomics contexts to date.

In the absence of a high-resolution three-

dimensional structure, an important corner-

stone for the functional analysis of any

membrane protein is an accurate topology

model. A topology model describes the num-

ber of transmembrane spans and the orien-

tation of the protein relative to the lipid

bilayer. Topology models are usually pro-

duced by either sequence-based prediction

or time-consuming experimental approaches.

We have previously shown that topology

prediction can be greatly improved by con-

straining it with an experimentally deter-

mined reference point, such as the location

of a protein_s C terminus (3). For E. coli pro-

teins, reference points can be obtained most

easily through the use of topology reporter

proteins such as alkaline phosphatase (PhoA)

and green fluorescent protein (GFP). PhoA

and GFP have opposite activity profiles: PhoA

is active only in the periplasm of E. coli (4),

whereas GFP is fluorescent only in the cyto-

plasm (5). When fused in parallel to the C

terminus of a membrane protein, PhoA and

GFP can accurately report on which side of

the membrane the C terminus is located (6, 7).

Here, we have applied the PhoA/GFP fusion

approach to derive topology models for almost

the entire E. coli inner membrane proteome.

Bioinformatic analysis of the E. coli pro-

teome using the hidden Markov model topol-

ogy predictor TMHMM (1) indicates that

approximately 1000 of the 4288 predicted

genes encode integral inner membrane pro-

teins. We focused on the 737 genes that en-

code proteins longer than 100 residues with

at least two predicted transmembrane helices.

The second criterion was necessary to ensure

that secreted proteins, whose hydrophobic

signal sequence is often mistakenly pre-

dicted as a transmembrane helix, were not

included.

Of the 737 selected genes, 714 were suit-

able for cloning into a standard set of phoA

and gfp fusion vectors (8). We were able to

obtain both fusions for 573 genes and one

fusion for an additional 92 genes (Fig. 1, in-

set). By determining appropriate cutoffs (8),

the C-terminal location (C
in

, C
out

) could be

assigned for 502 of the 665 cloned proteins

by comparison of whole-cell GFP fluores-

cence and PhoA activity or, in a small num-

ber of cases, by either activity alone (Fig. 1).

To assign the location of the C terminus

for the remaining proteins, we used the basic

local alignment search tool (BLAST) (9) to

search for homologs to the unassigned pro-

teins among the 502 assigned proteins, im-

posing a strict E-value cutoff (10–4) and the

requirement that the BLAST-alignment

should extend to within 25 residues of the

C terminus of both proteins. We were able to

assign C-terminal locations for an additional

99 proteins in this way, bringing the total

number of assignments to 601 of the 737

proteins in the initial data set (table S1). Ob-

viously, the same homology-based assignment

scheme can be used to transfer the experi-

mental data to other membrane proteomes.

The location of the C terminus for 71 of the

601 proteins was already known from pub-

lished topology models (table S1) and was used

to check the quality of our data. For all but

two proteins, ArsB and YccA, our C-terminal

assignment agreed with the published assign-

ment. In the case of ArsB, the previous study

(10) did not include experimental information

on the location of the C terminus, and we sug-

gest that our assignment is correct. For YccA,

the reported experimental data on the loca-

tion of the C terminus (11) contradicts our re-

sult; further studies will be required to resolve

this discrepancy. In any case, it appears that
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Fig. 1. Normalized PhoA and GFP activities. Cut-
off lines for the assignment of Cin (cytoplasmic)
and Cout (periplasmic) orientations are shown in
black. Green and red dots: proteins assigned as
Cin and Cout, respectively, based on the exper-
imental data. Black and blue dots: proteins as-
signed as Cin and Cout, respectively, based on
sequence homology to proteins with experimen-
tally assigned C-terminal locations. (Inset) Venn
diagram showing the number of proteins for
which none, one, or both PhoA (red) and GFP
(green) fusions were obtained.
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the error rate in our C-terminal assignments

is on the order of 1% or less.

Using the experimentally determined

C-terminal locations as constraints for the

TMHMM topology predictor (3), we gener-

ated experimentally based topology models

for the 601 proteins, including 46 models

from our previously published work (6, 7)

(table S1 and www.sbc.su.se/Èerikgr/tmhmm/

index.html).

In the absence of experimental data,

TMHMM alone predicts the correct C-

terminal location for only 78% of the 601 pro-

teins. By providing unambiguous C-terminal

locations, the inclusion of experimental data

thus leads to a major improvement in the

overall quality of the topology models (illus-

trated in fig. S1). This is also reflected in the

TMHMM reliability score (3); the score in-

creases for 526 proteins and decreases for 75

proteins upon fixing of the C terminus.

To obtain a global view of the topologies

within the proteome and how they relate to

protein function, proteins were sorted ac-

cording to known or predicted functional cat-

egories (Fig. 2). The most obvious trend is

the predominance of N
in

-C
in

topologies (57%

of all proteins), which suggests that pairs

of closely spaced transmembrane helices

(Bhelical hairpins[) may be a basic building

block in membrane proteins. The largest func-

tional category is transport proteins, many

with 6 or 12 transmembrane helices. Most

proteins with unknown function have e6

transmembrane helices, pointing to a sys-

tematic lack of studies of the smaller inner

membrane proteins.

We have previously identified a case in

which a gene duplication event has led to the

formation of two separately expressed ho-

mologous proteins (YdgQ and YdgL) with

opposite orientations in the membrane (12).

To identify new instances of this kind, we

searched for families of homologs that in-

clude pairs of proteins with the same number

of predicted transmembrane helices but op-

positely assigned C-terminal locations. Only

the YdgE and YdgF proteins, both members

of the small multidrug resistance (SMR) fam-

ily of transporters (13), were found (fig. S2).

The ydgE and ydgF genes overlap each other

on the E. coli chromosome, and the two pro-

teins catalyze drug efflux only when coex-

pressed (14), which suggests that they form

an antiparallel heterodimer (or higher oli-

gomer) in the inner membrane.

EmrE, another member of the SMR fam-

ily, has been suggested to adopt a dual topol-

ogy in the inner membrane, where one N
in

-C
in

molecule forms an antiparallel homodimer

with one N
out

-C
out

molecule (15–17). EmrE

is assigned as C
out

in our data set, but also

has GFP fluorescence above background.

Notably, EmrE contains very few positively

charged residues, evenly distributed between

the different loops, and thus lacks a clear

Bpositive-inside[ bias (18). We searched for

additional candidate dual topology proteins

with a weak charge bias and above-background

PhoA and GFP activities. Five additional

proteins emerged as possible dual topology

proteins: SugE (a member of the SMR fam-

ily), CrcB, YdgC, YnfA, and YbfB (fig. S2).

Strikingly, all these proteins are small (around

100 residues) and have three or four strongly

predicted transmembrane helices.

Although proteins with internal duplica-

tions in which the two halves of the protein

have opposite orientations in the membrane

are quite common among the E. coli inner

membrane proteins (19–23), we conclude that

homologs with opposite membrane orienta-

tions, as well as proteins with a dual topol-

ogy, are exceedingly rare. Possibly, protein

folding and assembly are more efficient when

the two oppositely oriented halves are part of

a single polypeptide chain than when they

are expressed separately.

For the È80% of the inner membrane pro-

teome with a C
in

orientation, the whole-cell

GFP fluorescence provides a good estimate

of the amount of fusion protein inserted into

the membrane (24). Using standard over-

expression conditions (8), we tabulated the

GFP activity for the 397 proteins assigned as

C
in

(Fig. 3). We also assessed the effect of

overexpression on cell growth, as determined

by the change in optical density of the cell

suspension after induction of membrane pro-

Fig. 2. Functional catego-
rization of the E. coli inner
membrane proteome. (A) The
fractions of the inner mem-
brane proteome (737 proteins)
assigned to different func-
tional categories. (B) The num-
ber of proteins with assigned
C-terminal location in each
functional category for differ-
ent topologies (601 proteins
in total). Cin topologies are
plotted upward, Cout down-
ward. For Cin proteins, even
numbers of transmembrane
helices are three times as com-
mon as odd numbers; for Cout
proteins, odd and even num-
bers of transmembrane helices
are roughly equal.
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tein synthesis. Although a small number of

proteins appeared toxic (Fig. 3, inset), the

vast majority had only a limited effect on

cell growth. Overexpression levels do not cor-

relate with—and hence cannot be predicted

by—obvious sequence characteristics such as

codon usage, protein size, hydrophobicity, and

number of transmembrane helices (table S2).

The C-terminal His
8

tag and the tobacco etch

virus (TEV) protease site present in the GFP

fusions (8) make it possible to use an efficient,

standardized purification protocol for the whole

clone collection; yields of purified fusion pro-

tein are typically Q1 mg per liter of culture

(25). This sets a lower limit for what can be

expected for individual proteins expressed,

for example, without a GFP tag or using other

expression vectors and growth conditions (26).

In conclusion, by analyzing a library of E.

coli inner membrane proteins fused to PhoA

and GFP, we have derived an experimentally

based set of topology models for the membrane

proteome and provide a large-scale data set on

membrane protein overexpression. Our results

provide an important basis for future functional

studies of membrane proteomes and will

facilitate the identification of well-expressed

targets for structural genomics projects.
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Firearm Violence Exposure and
Serious Violent Behavior

Jeffrey B. Bingenheimer,1* Robert T. Brennan,2 Felton J. Earls2

To estimate the cause-effect relationship between exposure to firearm vio-
lence and subsequent perpetration of serious violence, we applied the analytic
method of propensity stratification to longitudinal data on adolescents resid-
ing in Chicago, Illinois. Results indicate that exposure to firearm violence ap-
proximately doubles the probability that an adolescent will perpetrate serious
violence over the subsequent 2 years.

Within the past few decades, the popular no-

tion that violence begets violence has come

under scientific scrutiny. Early research by psy-

chologists, criminologists, and others focused

on the impact of being physically abused as

a child on subsequent delinquency, commu-

nity violence, and spouse and child abuse.

Simple comparisons of violent offenders and

nonoffenders showed that the former were

more likely to report having been abused

during childhood (1, 2). More carefully con-

trolled prospective studies comparing abused

and nonabused children confirmed these ba-

sic relationships (3) and provided insights into

the cognitive and neurological mechanisms

involved (4, 5).

Recently, interest has expanded to encom-

pass exposure to violence occurring in com-

munity settings such as neighborhoods and

schools. This change was spurred in part by

elevated rates of violent crime, including fire-

arm homicide, in American cities in the ear-

ly 1990s (6, 7). In several studies conducted

around that time, urban children and ado-

lescents reported alarmingly high levels of

exposure to community violence, both as wit-

nesses and as victims (8–10). These findings

raised troubling questions about the possible

developmental ramifications of such wide-

spread experience with violence.

Numerous recent investigations have revealed

statistical associations between children_s
and adolescents_ self-reports of exposure to

community violence and concurrent or sub-

sequent assessments of violence and aggres-

sion (11–14). Available estimates of these

associations, however, do not adequately con-

trol for the possibility that a common set of

personal characteristics and environment cir-

cumstances may jointly influence who is ex-

posed to community violence and who be-

comes a perpetrator of violent acts. The extent

to which these statistical associations are at-

tributable to cause-effect relationships there-

fore remains uncertain (15).

The randomized experiment is the scien-

tific gold standard for causal inference, but in

the instance of community violence is neither

technically nor ethically feasible. We used

the method of propensity score stratification

(16–18) to approximate a randomized exper-

iment in which exposure to firearm violence

was the treatment variable and subsequent

perpetration of serious violence was the out-

come. This method is based upon counter-

factual thinking and the framework of potential

outcomes described by Rubin (19) and others

(20). Investigators in economics (21), med-

icine (22), and other fields (23) are increas-

ingly using propensity score matching and

stratification to improve the credibility of es-

timates of cause-effect relationships obtained

from observational data.

Propensity stratification views exposure al-

location as a process involving both system-

atic and random components. First, personal

and environmental characteristics of the in-

dividual determine systematically her or his

probability p of exposure, called the propen-

sity score. The individual then participates in

a lottery in which the exposure is assigned

with probability p, or nonexposure is assigned

with probability 1 – p. In theory, comparing

individuals with identical propensity scores

but different realized exposures is analogous

to conducting a randomized experiment, and

therefore provides a valid basis for measur-

ing a cause-effect relationship between expo-
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