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Abstract

We report the development of LumenP, a new neural network-based predictor for the identification of
proteins targeted to the thylakoid lumen of plant chloroplasts and prediction of their cleavage sites. When
used together with the previously developed TargetP predictor, LumenP reaches a significantly better
performance than what has been recorded for previous attempts at predicting thylakoid lumen location,
mostly due to a lower false positive rate. The combination of TargetP and LumenP predicts around
1.5%–3% of all proteins encoded in the genomes of Arabidopsis thaliana and Oryza sativa to be located in
the lumen of the thylakoid.
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From the point of view of protein sorting, the chloroplast of
higher plants presents a complex problem where nuclearly
encoded proteins must not only be targeted to the organelle,
but must further be sorted between at least six different
suborganellar compartments: the outer envelope membrane,
the interenvelope space, the inner envelope membrane, the
stroma, the thylakoid membrane, and the thylakoid lumen.
Targeting to the stromal compartment depends on an N-
terminal chloroplast transit peptide (cTP). Further transport
to the thylakoid lumen depends on a lumenal targeting pep-
tide (lTP) that is located immediately downstream of the
cTP in the nascent polypeptide (Robinson et al. 1998), and
that is in most cases cleaved off from the nascent chain by
the thylakoid processing peptidase (Halpin et al. 1989).
Sorting signals for the three envelope compartments are not
well understood.

Prediction of the subcellular localization of a protein
from its amino acid sequence is an important area in bio-
informatics (Emanuelsson and von Heijne 2001). One ap-

proach to this problem is to try to emulate the cellular pro-
cess of sorting signal recognition. One of the more widely
used methods of this kind is TargetP (Emanuelsson et al.
2000), a neural network-based predictor that assigns pro-
teins to four different locations: the secretory pathway, mi-
tochondria, chloroplasts, and “all other compartments.” An
attempt at a fully comprehensive prediction scheme is
PSORT1 (Nakai and Kanehisa 1992) that distinguishes be-
tween no less than 17 compartments when applied to plant
proteins.

The recognition of cTPs is already a part of TargetP, but
the program does not yet include a routine for predicting
lTPs. Because lTPs are quite similar to the signal peptides
that target proteins for secretion in bacteria, one way to
identify lTPs is to use TargetP to first search for cTPs,
followed by a search for signal peptides using the SignalP
predictor (Nielsen et al. 1997; Nielsen and Krogh 1998).
Such an approach has been used with some success, for
example, by Peltier et al. (2002) and Schubert et al. (2002).
However, we assumed that performance would be even bet-
ter with a dedicated lTP predictor trained on a proper lTP
data set.

Here, we report such a predictor—LumenP—that has
been constructed in a similar way as the existing compo-
nents of TargetP. When coupled with TargetP, LumenP al-
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lows proteins of the thylakoid lumen to be identified with
high confidence.

Results

Training sets and neural network architecture

As described in Materials and Methods, an initial data set of
259 lTP-containing proteins was collected from Swiss-Prot,
from the literature, and from experimental analyses of the
lumenal proteomes of Pisum sativum (Peltier et al. 2000;
Schubert et al. 2002) and Arabidopsis thaliana (Peltier et al.
2002; Schubert et al. 2002) thylakoids. These sequences
were further classified according to whether or not the lTP
contained the diagnostic “twin-arginine” signal that is found
in proteins that are imported into the thylakoid via the TAT-
pathway (twin-arginine translocation pathway; Berks et al.
2000). One hundred thirty eight such proteins were identi-
fied, and the remaining 121 proteins were assumed to be
imported using the Sec pathway.

Based on the observation that only 4% of the combined
cTP+lTP signals were longer than 130 residues, only the
N-terminal 130 residues were analyzed for each protein.
The 138 proteins in the TAT group and the 121 proteins in
the Sec group were treated as separate positive training sets,
and each set was redundancy-reduced as described in Ma-
terials and Methods. After this step, 50 nonhomologous se-
quences were left in the TAT group and 43 in the Sec group.
Because the precise extent of the lTP signal is in general not
known for these sequences, a stretch of 35 residues up-
stream of the lTP cleavage site (determined by experiments
if available, otherwise by similarity) was annotated as be-
longing to the lTP for the neural network training procedure.
A redundancy-reduced negative training set of 50 130-resi-
dues long nonthylakoid sequences (10 stromal proteins, 10
mitochondrial proteins, 10 nuclear proteins, 10 secreted pro-
teins, and 10 cytosolic proteins) was also collected.

For both the TAT and Sec training sets, two networks—
one on top of the other—were trained in the same way as
has been done previously for the SignalP (Nielsen et al.
1997) and ChloroP (Emanuelsson et al. 1999) predictors.
The first network was trained with the amino acid sequence
as input and a sliding window of size 35 residues. The
output of the first networks is one score per residue, giving
the probability that this residue is part of an lTP. The output
values for residues 21 to 110 for each protein were then
used as input to a second network with 90 input nodes. The
output of the second network is one score per protein, giving
the probability that the protein has an lTP. The networks
were trained using fivefold cross-validation.

Prediction of lTP cleavage site

An important part of the predictor is a scoring-matrix-based
method for predicting the cleavage site location of the lu-
menal targeting peptide. Focusing exclusively on the region

around the cleavage site we pooled the TAT and Sec
datasets because these signals are assumed to be cleaved by
the same protease. Thus, the entire set of 93 redundancy
reduced lumenal sequences were used in the construction of
the scoring matrix. First, the proteins were aligned (without
gaps) around their cleavage sites, and eight alignment po-
sitions were extracted—six from the lTP and two from the
mature part of the protein, thus covering the c-region of the
signal sequence (von Heijne 1983). Then, the cleavage site
scoring matrix was constructed by recording for each posi-
tion i in the alignment, the frequencies fi,j of each amino
acid j, and contrasting this frequency with the frequency pj

of that amino acid in a background set (see Materials and
Methods). The resulting scoring matrix can be used to scan
candidate sequences for the most probable cleavage site.
The search is limited to the sequence region comprising
residues 50–150 (this includes all known cTP+lTP lengths).

The SignalP predictor can also be used to predict lTP
cleavage sites. In this case, we employed a truncation
scheme (described below) resulting in 26 suggested cleav-
age sites per sequence, and the one with the highest cleav-
age site score was chosen as the final prediction. We also
compared our results with those obtained using an older
scoring-matrix method that was specifically designed to
predict lTP cleavage sites (Howe and Wallace 1990).

Performance tests and comparisons

The results of different combinations of test sets analyzed
by one or both of the Sec- and TAT-trained neural networks
are shown in Table 1. Not surprisingly, the Sec and TAT
networks perform best on their respective set of sequences.
For a cutoff score of 0.67, both reach a Matthews’ correla-
tion coefficient (MCC) of 0.74, with the corresponding sen-
sitivities and specificities in the range 0.8–0.9.

Because it is not known beforehand whether a particular
protein uses the TAT or the Sec pathway, we also analyzed

Table 1. Scores from different neural network combinations for
the redundancy reduced TAT and Sec test sets of thylakoid
lumen proteins and the common negative training set (cleavage
site scores not taken into account)

Test set
Neural network

used MCC Sensitivity Specificity

Sec + negative Sec 0.74 0.84 0.88
Sec+TAT 0.64 0.84 0.78

TAT + negative TAT 0.74 0.90 0.85
Sec+TAT 0.70 0.90 0.82

Sec + TAT +
negative

Sec+TAT 0.67 0.87 0.89

When the Sec- and TAT-trained networks were used in parallel
(Sec+TAT), the highest of the two output scores was chosen. The cutoff
score used for discriminating between sequences with and without an lTP
was 0.67 (see Fig. 1A).
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each sequence by both the Sec- and TAT-trained networks,
choosing the highest output score from the two networks.
For the cutoff score of 0.67, the MCC value is 0.67, while
the specificity and sensitivity are still mainly in the range
0.8–0.9 (Fig. 1A). In Figure 1B, the corresponding values
when using only the cleavage site score for discrimination
are shown. Clearly, there is a prediction power also in the
cleavage site scores. Thus, for the LumenP predictions, a
combination of the network score and the cleavage site
score was used for the discrimination lumenal/nonlumenal.
From an investigation of all possible cutoff combinations,
we concluded that a sequence should be required to have a
network score above 0.47 and a cleavage site score above

6.80 to be predicted as lumenal (data not shown). If not
stated otherwise, these cutoffs were used throughout this
report. Choosing other cutoffs is, of course, possible, and
would result in a changed sensitivity/specificity balance.
The exact choice of cutoffs was not critical to the perfor-
mance on the test set.

In Table 2, the results from a comparison between Lu-
menP, different versions of SignalP (Nielsen et al. 1997;
Nielsen and Krogh 1998), and PSORT1 (Nakai and Kane-
hisa 1992) on the LumenP redundancy reduced test set is
shown. TargetP (Emanuelsson et al. 2000) was used to pre-
select proteins with a predicted cTP. When combined with
TargetP, LumenP has an MCC value of 0.72, a sensitivity of
0.82, and a specificity of 0.96. For the TargetP+SignalP
analysis, we used the same truncation scheme as in Peltier
et al. (2002), that is, for each protein with a predicted cTP,
20–80 residues were removed (in steps of five residues)
from the N-terminus, and the protein was predicted as lu-
menal if at least one of these truncated forms was predicted
as lumenal (using both Gram-negative and Gram-positive
versions of SignalP, resulting in 26 predictions per protein).
The combination of TargetP and the HMM version of Sig-
nalP performed slightly better than the crossvalidated
TargetP+LumenP predictor (Table 2), while using the NN
version of SignalP resulted in performance levels on par
with TargetP+LumenP. PSORT1 had a much lower sensi-
tivity than both TargetP+LumenP and TargetP+SignalP.

Because the redundancy reduced test set used in the con-
struction of the predictor is relatively limited in size, there
was a need to further test the prediction accuracies of the
various predictors. Specifically, because the ratio of the
number of positive (93) and negative (50) sequences in the
test set is far from the ratio expected in a genome-wide scan,
we paid special attention to the tendency of falsely predict-
ing nonthylakoidal sequences as thylakoidal (overpredic-
tion), because such a feature would not be captured very
well by the test set.

All Plantae sequences from Swiss-Prot annotated as con-
taining a secretory signal peptide were analyzed (745 se-

Figure 1. Performance characteristics for different cutoff values using the
Sec+TAT-positive dataset and the mixed negative data set together with
the Sec+TAT networks (A) and using the scoring-matrix constructed for
prediction of cleavage sites as a discriminator lumenal/nonlumenal (B).
Matthews’ correlation coefficient, sensitivity, and specificity are plotted
against the score cutoff used to discriminate between lTP and non-lTP
sequences. MCC, Matthews’ correlation coefficient; sens, sensitivity; spec,
specificity.

Table 2. LumenP, SignalP, and PSORT1 predictions on the
redundancy reduced test set

Predictor MCC Sensitivity Specificity

LumenP 0.67 0.87 0.89
TargetP + LumenP 0.72 0.82 0.96
TargetP + SignalP (NN) 0.71 0.89 0.90
TargetP + SignalP (HMM) 0.76 0.89 0.93
PSORT1 0.37 0.39 0.95

For LumenP, fivefold crossvalidation was used, and for the
TargetP+LumenP results, the effects of cleavage site prediction were also
incorporated, as described in the text. For SignalP, the truncation scheme
(see text) was used. PSORT1 performance was evaluated based on highest
ranked prediction.
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quences) as well as a set of 878 plant sequences annotated
as being located in the chloroplast stroma. As shown in
Table 3, LumenP (with the TargetP preselection step) pre-
dicted only 0.4% of the signal peptides as being lTPs, while
the number of false positives from the stromal set was
18.8%. The combination of TargetP and SignalP, however,
predicted a much higher fraction of the stromal proteins as
lumenal, 28.8% (HMM) or 58.7% (NN). Table 3 also shows
the results of analyses of all Arabidopsis and Oryza proteins
present in Swiss-Prot that were not annotated as being thy-
lakoid lumenal. Again, LumenP performed better than Sig-
nalP-HMM, and they both performed significantly better
than the SignalP-NN. The PSORT1 results support the ob-
servation that PSORT1 is very conservative in its prediction
of lumenal proteins.

From these tests, we conclude that the major advantage of
the LumenP predictor is the reduced number of chloroplast
stromal proteins falsely predicted as being lumenal, while
still retaining a high level of sensitivity compared to the
SignalP-based approaches. A way to further decrease the
number of false positives is to focus on the subset of pro-
teins with the TAT pathway motif and require the presence
of the TAT motif (Arg-Arg) in a specified region upstream
of the predicted cleavage site. We looked for the motif in the
sequence region −18 to −32 relative to the cleavage site
(Peltier et al. 2002) and found that the number of false
positives were reduced for LumenP and SignalP in approxi-
mately equal amounts: 21% and 25% (for LumenP and Sig-
nalP, respectively) of the true stromal proteins predicted as
false positives were still predicted as lumenal when in ad-
dition to the results from the predictors also demanding the
presence of the TAT motif.

Investigating the TargetP+LumenP performance on the
Arabidopsis and Oryza Swiss-Prot subsets with known sub-
cellular localization, we found that almost all (88% and
100% for Arabidopsis and Oryza, respectively, data not
shown) of the proteins with a Swiss-Prot subcellular local-
ization annotation that were incorrectly assigned as lumenal
were annotated as stromal, which is in accordance with the
previous tests.

The results of the LumenP and SignalP approaches for
prediction of cleavage sites were rather similar to each

other; 72 of the 93 (77.4%) cleavage sites in the redun-
dancy-reduced test set were correctly predicted by LumenP,
compared to 70 (75.3%) using the computationally more
costly SignalP-NN analysis (Table 4). Testing the perfor-
mance on the entire set of 259 lumenal proteins revealed
again similar performance levels, 54.8% of the cleavage
sites were correctly predicted by LumenP and 55.6% by
SignalP. It is surprising that both LumenP and SignalP per-
formed much better on the redundancy reduced set of 93
proteins than on the remaining 166 lumenal proteins; we
have no good explanation for this at present. In accordance
with previous findings (Nielsen and Krogh 1998), we found
that the NN version of SignalP is clearly better than the
HMM version in predicting cleavage sites, even though the
HMM outperforms the NN on the lumenal/nonlumenal pre-
diction (Tables 2 and 3). The Howe-Wallace scoring matrix,
which is based on only 12 sequences, performed worse than
all the other methods, but again performed significantly
better on the test set (93 sequences) than on the entire lu-
menal set (259 sequences).

Conclusions

We have devised a new neural network predictor, LumenP,
that is intended to be used together with TargetP to identify

Table 3. Estimates of the false positive rates for thylakoid lumenal protein prediction using four sets collected from Swiss-Prot: all
Plantate sequences annotated as containing a signal peptide (SP); all Plantae sequences annotated as being stromal; all proteins
(with or without localization annotation) not annotated as thylakoid lumen from Arabidopsis thaliana; and all proteins (with or
without localization annotation) not annotated as thylakoid lumen from Oryza sativa

Set Number of sequences TargetP+LumenP TargetP+SignalP (NN) TargetP+SignalP (HMM) PSORT1

Plantae SP 745 3 (0.4%) 8 (1.1%) 5 (0.7%) 0 (0%)
Plantae chloroplast stroma 878 165 (18.8%) 515 (58.7%) 253 (28.8%) 43 (4.9%)
Arabidopsis not thylakoid 1034 61 (5.9%) 169 (16.3%) 81 (7.8%) 12 (1.2%)
Oryza not thylakoid 402 5 (1.2%) 40 (10.0%) 17 (4.2%) 5 (1.2%)

For SignalP, the truncation scheme (see text) was used.

Table 4. Cleavage site prediction

Cleavage site
predictor

Data sets

Test set (93 Sec+TAT) Lumenal set (259 Sect+TAT)

LumenP 72 (77.4%) 142 (54.8%)
SignalP (NN) 70 (75.3%) 144 (55.6%)
SignalP (HMM) 61 (65.6%) 131 (50.6%)
Howe-Wallace 45 (48.4%) 102 (39.4%)

Comparison of cleavage site (CS) prediction performance between the new
LumenP method, SignalP (both NN and HMM versions), and the Howe-
Wallace scoring matrix. The number and percent of correctly predicted
cleavage sites is shown. For the SignalP analysis, we used both Gram-
negative and Gram-positive versions and applied the truncation scheme
described in the text. From the resulting 26 suggested cleavage sites (13
each from Gram-negative and Gram-positive versions, respectively), the
one with the highest cleavage site score (NN: max Y-score, HMM: C-max
score) was chosen as the final prediction.

Prediction of thylakoid proteins
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nuclearly encoded plant proteins destined for the lumen of
the thylakoid. As judged by fivefold crossvalidation using a
positive set of 93 nonhomologous lumenal proteins (further
divided into a TAT and a Sec group) that all contain both a
cTP and an lTP, and a mixed negative set of 50 proteins not
present in the thylakoid lumen, we find that the combination
of TargetP (to identify proteins with a cTP) and LumenP (to
identify lTPs in the proteins passed on from TargetP)
reaches a Matthews’ correlation coefficient of 0.72 with a
sensitivity of 0.82 and a specificity of 0.96 (Table 2) when
including LumenP cleavage site scores. The lTP cleavage
site prediction performance was on par with an approach
based on a truncation scheme requiring 26 runs of SignalP
to arrive at a prediction. Thus, the LumenP method for
predicting cleavage sites is simpler to use and as accurate as
the SignalP approach (Table 4).

To evaluate the frequency of false-positive predictions on
a realistic test set, we applied LumenP and TargetP+LumenP
to all plant proteins found in Swiss-Prot that were annotated
as either containing a signal peptide (i.e., nuclearly encoded
secretory proteins) or as being located in the chloroplast
stroma. Although LumenP by itself identifies many signal
peptides as being lTPs (data not shown), almost no secretory
proteins survive through the combined TargetP+LumenP
predictor. In contrast, 19% of the proteins annotated as chlo-
roplast stromal (i.e., having a cTP but not an lTP) are pre-
dicted as lumenal by TargetP+LumenP (Table 3). This
rather high value suggests that some of these proteins may
be misannotated and are, in fact, lumenal, which is further
supported by the observation that on the Swiss-Prot A.
thaliana and Oryza sativa subsets with annotated subcellu-
lar location, almost all of the incorrectly assigned lumen
proteins were annotated as stromal. A comparison with the
TargetP+SignalP approach (including the sequence trunca-
tion scheme described above) for predicting lumenal se-
quences revealed that the most significant contribution of
LumenP is to reduce the number of false positives.

A final application was to scan all the Arabidopsis and
Oryza ORFs predicted from the complete genome se-
quences. Using prescreening by TargetP and then LumenP
(cutoff pair 0.67/6.80), 417 out of 25,826 (1.6%) Arabidop-
sis, and 1200 out of 41,915 (2.9%) Oryza proteins were
predicted as being located in the lumen of the thylakoid. A
full listing of the predicted lumenal proteins is provided as
Supplemental Material.

Materials and methods

Datasets used in training and testing of LumenP

Positive set

Two hundred fifty-four sequences for thylakoidal lumenal pro-
teins were generously provided by Jean-Benoît Peltier (Cornell

University). This set was expanded by searching Swiss-Prot re-
lease 40 (O’Donovan et al. 2002) for lumenal sequences not pres-
ent in the Peltier data set. Sequences were extracted by searching
for “THYLAKOID LUMEN” in the FT field and “SUBCELLULAR
COMPARTMENT: THYLAKOID LUMEN” in the CC field. Tar-
geting peptide entries marked as POTENTIAL, BY SIMILARITY,
or PROBABLE were excluded. By this approach, five more se-
quences were found. Including these sequences and their orthologs
resulted in a final positive set of 259 sequences. By searching for
the so-called twin-arginine motif Arg-Arg upstream of the hydro-
phobic region in the lTPs, 138 of these were classified as belong-
ing to the TAT pathway and 121 as belonging to the Sec or other
pathways. The data set is available as Supplemental Material.

Because lTPs have been shown to have much less sequence
conservation than the mature part of the protein (Peltier et al.
2002), only the cTP+lTP part of the proteins was used for the
training of LumenP. The cTP part was not removed because the
exact cTP cleavage sites are generally not known. Also, TargetP
prediction of cTP cleavage sites is not very reliable (Emanuelsson
et al. 1999). Instead, a stretch of 35 residues upstream of the lTP
cleavage site (determined by experiments if available, otherwise
by similarity) roughly corresponding to the average length of lTPs,
were annotated as belonging to the lTP in the neural network
training procedure.

Negative set

A mixed negative set of roughly the same size as the positive
TAT and Sec sets was constructed. This set contained proteins
destined for the chloroplast (but not the thylakoid lumen), mito-
chondrion, cytoplasm, nucleus, and secretory pathway, in equal
numbers.

The chloroplast sequences were extracted from Swiss-Prot
release 40 by searching for “SUBCELLULAR LOCATION:
CHLOROPLAST” in the CC field and “CHLOROPLAST” in the
FT field. Proteins encoded in the chloroplast genome were ex-
cluded, as were those of algal origin, because cTPs from the green
algae Chlamydomonas reinhardtii have been shown to be more
similar to mTPs than to cTPs from higher plants in terms of length
and amino acid composition (Franzén et al. 1990). The chloroplast
sequences were truncated to the 130 most N-terminal amino acids
before redundancy reduction.

All other sequences in the negative test set were picked at ran-
dom from the redundancy reduced TargetP training set (available
at http://www.cbs.dtu.dk/services/TargetP/datasets/datasets.html)
from which the sequences redundancy-reduced on the 112 N-ter-
minal amino acids were used. The mixed negative set contained 50
sequences, 10 destined for each compartment.

Redundancy reduction

Redundancy reduction, that is, removal of homologous se-
quences, of the positive and negative sets was done in three steps.
First, all sequences in a set were pairwise aligned all against all
using the full Smith-Waterman algorithm (Smith and Waterman
1981) with the PAM250 scoring matrix as implemented in the
ssearch program of the FASTA package (Pearson 1990). Based on
the distribution of alignment scores, the threshold score above
which sequences were considered as too similar for network train-
ing was chosen as the value where the actual distribution of scores
deviated from the extreme-value distribution expected for a local
alignment of random sequences (Pedersen and Nielsen 1997). A
pair of proteins whose similarity score is above the chosen cutoff
are called “neighbors.” The Hobohm algorithm 2 (Hobohm et al.
1992) was applied until no proteins were left that had any neigh-
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bors within the cutoff score. This algorithm creates a list of all
proteins and their neighbors and then removes the protein that has
the largest number of neighbors. Then, the neighbor list is recal-
culated, and again the protein with the largest number of neighbors
is removed, and so on until the list only contains proteins that have
no neighbors.

After redundancy reduction, a total of 93 sequences were left in
the positive set (50 in the TAT group and 43 in the Sec group).

Cross-validation

Fivefold cross-validation was used during training of the neural
networks. Each of the five subsets contained about equal numbers
of positive and negative examples, as well as equal numbers of the
different types of negative examples, that is, chloroplast, mito-
chondrial, cytoplasmic, secretory pathway, and nuclear sequences.

Neural network architecture and training

The Billnet (Perantonis and Virvilis 2000) neural network simu-
lator platform (issued under GPL at http://www.iit.demokritos.gr/
∼vasvir/billnet/) was used for the development of LumenP.

For the recognition of both TAT and non-TAT lumenal proteins,
two separate neural networks on top of each other were used. In the
first layer network, the input data were as described above, and
presented using sparse encoding and a sliding window of size 35
residues. The output of the first layer network is one score per
residue, and the outputs corresponding to residues 21 to 110 for
each protein (counting from the N-terminus) are forwarded to the
second layer network, which outputs one score per protein based
on the 90 input values it receives from the first layer network.
Networks were separately trained on the TAT and Sec datasets. In
the final LumenP predictor, the query protein is processed through
both the TAT and Sec networks in parallel, giving two final scores
of which the highest is chosen for the prediction.

A standard feed-forward network with a sigmoid transfer func-
tion with logistic neurons, one hidden layer, and a sigmoid steep-
ness of 4 was chosen for both the first and second layer network.
The number of neurons in the hidden layer were 8 in both the first
and second level networks for both the TAT and Sec versions. The
back-propagation error method was used as training algorithm and
the initial weights were chosen at random. The learning rate was
set to 0.001 for all networks, and the number of training cycles to
350 for first layer networks, and 100 or 150 for the TAT and Sec
second layer networks, respectively. By choosing a constant num-
ber of training cycles for all networks in the cross-validation, we
avoid optimizing on the individual test sets. Furthermore, the per-
formance fluctuations were very small in a large region around the
chosen training cycle numbers, and test set performance was thus
not sensitive to the exact choice of stopping point.

Scoring matrix for cleavage site prediction

A cleavage site scoring matrix was constructed from an alignment
of the region around the annotated cleavage sites. The set of 93
redundancy reduced lumenal sequences were used for constructing
the alignment. The elements (scores) si,j of the scoring matrix,
where i is the sequence motif position and j the amino acid, were
then calculated from the multiple alignment in a standard fashion:

si,j = log2

fi,j
pj

,

where fi,j is the frequency of amino acid j at position i, and pj is the
background frequency of that amino acid in a background set. A
simple form of pseudoconts was used: one was added to each
count (Laplace’s rule). The total amino acid distribution of the 259
lumenal full-length proteins was used as the background.

Performance measures

Prediction performance was measured by determining the sensi-
tivity (number of true positives/[number of true positives + number
of false negatives]), specificity (number of true positives/[number
of true positives + number of false positives]), and the Matthews’
correlation coefficient (Matthews 1975), which is one for a perfect
prediction and zero for a completely random assignment.

To further assess the number of predicted false positives, LumenP
was also tested on all Plantae sequences from Swiss-Prot release
40 annotated as containing a secretory signal peptide (SP) or an-
notated as chloroplast (but not thylakoid lumen). All entries of
plant origin were extracted by searching for “Eukaryota; Viridi-
plantae” in the OC line, resulting in 5694 entries. From this set,
sequences annotated as containing an SP were extracted by search-
ing for the keyword “SIGNAL” in the FT field, resulting in 745
entries. All sequences with “SUBCELLULAR LOCATION:
CHLOROPLAST” in the CC field and “CHLOROPLAST” in the
FT field were collected and those annotated as thylakoid proteins
were excluded, resulting in 878 sequences. Also, all Arabidopsis
(1034 sequences) and Oryza (402 sequences) sequences found in
Swiss-Prot release 40 and 40.17, respectively, were analyzed (with
proteins with clear annotation of thylakoid localization removed).

Genome-wide datasets

The fully sequenced genomes of A. thaliana (The Arabidopsis
Genome Initiative 2000; 25,826 ORFs, downloaded from ftp://
ftpmips.gsf.de/cress/arabiprot/, version 2002-04-03) and O. sativa
(Goff et al. 2002; 41,915 ORFs, downloaded from ftp://ftp.tigr.org/
pub/data/o_sativa/irgsp/PUBLICATION_RELEASE/GENOME/,
version 2002-04-19) were analyzed.

Availability

LumenP prediction is available from the authors by request via
e-mail (gunnar@dbb.su.se).
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