
The machinery of membrane protein assembly
Stephen H White1 and Gunnar von Heijne2
The SecY (bacteria) and Sec61 (eukaryotes) translocon

complexes, or protein-conducting channels, work in concert

with bound ribosomes to insert proteins into membranes during

the first step of membrane protein assembly. The

crystallographic structure of an archaeal SecY translocon

provides dramatic new insights into the mechanism of

translocon function. This structure suggests an explanation

for how the translocon can aid in establishing membrane

protein topology via the positive-inside rule. The folding

of membrane proteins may begin in the ribosome exit tunnel,

before entering the translocon, according to cryo-electron

microscopy and biophysical studies.
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Introduction
The prediction of the three-dimensional structure of a

membrane protein (MP) from its sequence requires an

understanding of two fundamental issues: mechanisms of

the biological assembly of MPs and the principles behind

the physical stability of MPs in their natural lipid bilayer

milieu. The physical principles behind MP stability have

recently been addressed in several reviews [1–3], as have

the mechanisms of assembly [4–6]. During the past year

or two, exceptional progress has been made toward under-

standing important details of how the machinery of MP
iencedirect.com
assembly works. This progress is the focus of this review,

which emphasizes the assembly of a-helical MPs.

Proteins destined for export (translocation) across or

insertion into membranes are generally managed by

the concerted action of translating ribosomes in the

cytoplasm and translocons located in the endoplasmic

reticulum (ER) of eukaryotes or the plasma membrane

of bacteria. The management principles are summarized

in Figure 1. This highly schematic figure directs attention

to several important advances discussed in this review.

These advances concern three important questions: what

is the structure of the translocon (also called the protein-

conducting channel); how is the topology of MPs estab-

lished; and to what extent are nascent proteins folded

while in the exit tunnel of the ribosome? The logical

starting point for addressing these questions is the struc-

ture of a protein-conducting channel, described for the

first time at atomic resolution at the beginning of 2004.

Translocon structure
The translocon is composed of a heterotrimeric protein

called Sec61 in eukaryotes and SecY in bacteria. Early

cryo-EM image reconstructions [7–9] of translocons and

ribosome–translocon complexes revealed a translocon

with a diameter of about 100 Å and, apparently, a central

~20 Å diameter transmembrane (TM) passageway for

nascent proteins, suggesting that the functional translo-

con is composed of about three to four SecY/Sec61 com-

plexes. A crucial issue arose regarding how a tight seal is

maintained to prevent ion leakage across the membrane.

Various biochemical and biophysical evidence suggested

that the ribosome forms a tight seal with the translocon on

the cytoplasmic side of the membrane; other proteins,

such as BiP, provide a seal on the opposite side (reviewed

in [4]). On the other hand, more recent low-resolution

image reconstructions [10,11�] suggested, as did one of

the earlier reconstructions [9], that the ribosome does not

form a tight seal with the translocon. The lack of a tight seal

raised the possibility that, somehow, the translocon is self-

sealing. The apparent lack of an obvious large diameter

tunnel in these reconstructions and in an 8 Å electron

crystallographic structure [12�] supported this view.

The 3.8 Å crystallographic structure (Figure 2) of the

SecY complex from Methanococcus jannaschii, published

by van den Berg [13��], also supports this new view of

translocon function. Furthermore, it suggests that trans-

locon-mediated protein export and membrane insertion is

a solo act, involving, at any particular time, only one

of the SecY/Sec61 complexes that may, in a tetrameric

arrangement (Figure 2a, upper right), form the ~100 Å
Current Opinion in Structural Biology 2004, 14:397–404
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Figure 1

The machinery of membrane protein assembly. (a) A ribosome

translating the mRNA of a protein targeted for export (translocation)

across or insertion into membranes. An SRP, which is a GTPase,

can bind to the ribosome and thereby arrest elongation. The

structures of ribosomes are reviewed in [31–33] and the structure

of SRP in [39,40]. (b) The ribosome and SRP recognize the emerging

signal (purple), bind to each other and cause arrest of elongation.

A cryo-EM structure of an elongation-arrested ribosome with bound

SRP, solved to 12 Å resolution, has been recently published [41�].

(c) The ribosome–SRP complex binds to membrane-bound SR

(green), another GTPase, which associates dynamically with the

translocon (orange). Prokaryotes use a simplified SRP (Ffh) and SR

(FtsY). Recent three-dimensional structures of the Ffh–FtsY complex

[42�,43�] show that the two molecules form a quasi-twofold

symmetrical dimer. The binding of SRP to SR causes reciprocal

Current Opinion in Structural Biology 2004, 14:397–404
diameter tunnel-like structure seen in image reconstruc-

tions. The authors present strong arguments supporting

the arrangement of SecY complex monomers shown in

the figure, if indeed the structure is a tetramer. They note

that the probable passageways out of the monomers into

the bilayer (see below) face away from the tetramer’s

center of symmetry and that, at the symmetry axis of the

tetramer, the surfaces of the monomers are highly hydro-

phobic. They suggest that any ‘hole’ at the center of

symmetry is likely to be filled with lipids rather than

water.

Figure 2a shows top (viewed normal to the membrane),

front (viewed parallel to the membrane) and back views

of the a, b and g subunits comprising the SecY protein-

conducting channel. No nascent peptide is observed in

the structure, which is assumed to be in the closed state.

The ten TM helices of the a subunit are arranged to form

an inverted ‘U’ (Figure 2a, top view), with TM helices

1–5 (colored green in Figure 2a) forming one leg and

helices 6–10 (colored orange) forming the other. The two

sets of helices have a pseudo-symmetric arrangement

around a front-to-back twofold rotation axis in the plane

of the membrane and are connected at the back by an

external loop. This loop and the single TM helix of the g

subunit, which runs diagonally across the back of the a

subunit, largely prevent lipids contacting the helices of

the a subunit from the backside. The unrestricted front of

the molecule thus provides the only possible opening

from the interior into the lipid bilayer. This opening is

protected by TM helices 2 and 7 (light green and light

orange, respectively), which form the edges of the so-

called lateral gate; this is hypothesized to control the

passage of nascent TM helices into the bilayer. Biochem-

ical evidence discussed by van den Berg et al. [13��]
implicates helices 2 and 7, and parts of adjacent helices

3 and 8 as the binding site for signal sequences and,

presumably, stop-transfer sequences (see below). A mod-

est rearrangement of these helices permitted the authors

to model, rather easily, in this location a nascent chain as

an a helix. Interestingly, a short helical segment (helix

2A) that immediately precedes helix 2 acts as an apparent

‘plug’ to block the passage of small molecules through the
stimulation of their GTPase activities. As a result, the SRP disengages

from the SR and the ribosome, the nascent protein signal is

transferred to the translocon and elongation of the nascent peptide

resumes. (d) Proteins targeted for translocation are secreted into the

periplasm (bacteria) or ER lumen (eukaryotes), whereas the

stop-transfer signals of MPs are transferred to the membrane bilayer.

The direction of insertion of the signal sequence N terminus across

the membrane determines the topology of the MP (see Figure 3a).

However, this picture is not complete for bacteria, mitochondria and

chloroplasts. An additional membrane protein (YidC, Oxa1 and Alb3,

respectively) can be important for proper protein insertion and/or

folding (reviewed in [44,45]). Nagamori et al. [46] recently showed that

the membrane transport protein lactose permease (LacY) is inserted

into the plasma membrane of E. coli in the absence of YidC, but

with an incorrect fold. If YidC is present, then LacY folds correctly.

www.sciencedirect.com
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translocon in the closed state. The authors hypothesize

that the plug is displaced by nascent protein translocation.

The plug sits just below the waist of an hourglass-shaped

vestibule that provides access from either side of the

protein-conducting channel into the protein interior. The

waist of the hourglass is formed by a ring of hydrophobic

residues (hydrophobic collar, Figure 2b) that is hypothe-

sized to form a seal around translocating nascent chains.

The structures of both the protein-conducting channel

and the hypothesized lateral gate that opens to allow the

passage of TM helices into the lipid membrane are

consistent with cross-linking studies [14–16] of nascent

chains, and suggest that TM helices integrate into the

membrane by simple partitioning between the translocon

and the membrane. In such a scheme, sufficiently hydro-

phobic helices would prefer the bilayer, whereas more

polar helices would favor the translocon and ultimately

the aqueous phase. That is, the translocon and lipid

bilayer would work in concert to decipher the code for

TM helices embedded in the amino acid sequence. If this

view is correct, then the next big question concerns the

code and the details of the deciphering process. Answers

to this question should lead to major improvements in the

prediction of membrane protein structure.

Establishing membrane protein topology
The topology of a-helical MPs, whether single-span or

multispan, is apparently established during the passage of

nascent chains through the translocon (reviewed in [17]).

The three principal types of single-span MPs are shown

in Figure 3. In very broad terms, the topology follows the

so-called positive-inside rule [18,19]. For bacterial MPs,

there is a very strong statistical preference (about three-

fold) for positively charged residues to be present in

cytoplasmic loops rather than periplasmic loops. This

has generally been attributed to the transmembrane

potential (negative in the cytoplasm relative to the peri-

plasm; however, a TM potential is apparently not

required for membrane synthesis [20]) and to the fact

that negatively charged lipids are more abundant in the

cytoplasmic bilayer leaflet. A similar bias is seen for ER,

mitochondria and chloroplasts [21,22]. Hartmann et al.
[23] found that the net charge difference between

sequence segments lying on either end of a hydrophobic

TM signal-sequence segment correlates best with the

orientation for ER MPs and studies in yeast support this

contention [24]. As summarized in Figure 3a, the flanking

segment with the greater positive charge is generally

cytoplasmic. Importantly, changing the flanking charges

by site-directed mutagenesis can reverse the topology of a

segment (reviewed in [17]). However, other features of

signal-sequence segments, such as the length and hydro-

phobicity, are also important.

Spiess and colleagues have recently reported experiments

that help clarify two questions about how MP topology is
www.sciencedirect.com
established within the translocon. The first question

addressed is whether the translocon itself dictates the

orientation of the TM segments. Hypothesizing that

negatively charged residues in the cytoplasmic loops

and/or positively charged residues in the exoplasmic loops

of Saccharomyces cerevisiae Sec61p (equivalent to the Sec61

a subunit in mammals) interact directly with the flanking

charges of a hydrophobic signal segment, Goder et al.
[25��] mutated numerous charged residues in these

regions to residues of the opposite charge. Using a model

protein with an N-terminal signal anchor (type II,

Figure 3a), they found that several charge inversions

(R67E, R74E, E382R) caused a strong shift of the signal

anchor orientation from the normal Ncyt/Cexo orientation

to Nexo/Ccyt, consistent with their hypothesis. Where are

these residues located in the context of the M. jannaschii
SecY a subunit structure of van den Berg et al. [13��]? To

find out, we first established from the Sec61/SecY

sequence alignments of van den Berg et al. (see supple-

ment S1 of [13��]) the corresponding M. jannaschii SecY a

subunit residues: Q60 (~R67), R66 (~R74) and E336

(~E382). These equivalent residues are identified in

Figure 2b, where they have been connected by a broad

yellow-and-black line. This line runs rather precisely

from E336 at the top of TM helix 8 (part of the lateral

gate), through the hydrophobic collar, and terminates at

Q60 and R66, which are in close proximity to one another

on TM helix 2A. The distance between E336 and Q60/

R66 is 33 Å, which is about the thickness of the hydro-

carbon core of a lipid bilayer. This path corresponds

closely to the axis of the hydrophobic signal sequence

modeled into the SecY a subunit by van den Berg et al.
(see Figure 5 in [13��]). It is intriguing that Q60 and R66

are part of the so-called plug that obscures the presumed

exit of the translocon in the absence of a nascent protein.

Is it possible that these two residues participate in the

displacement of the plug by nascent helices?

The second question addressed by Spiess and colleagues

concerns getting the signal anchor to orient in the correct

direction within the translocon and thus set MP topology.

The natural direction of movement of a nascent chain is

for the N terminus to move from cytoplasm toward

exoplasm. So, the orientations of type I and type III

MPs seem expected. But what about the type II MPs

and even the cleavable sequence of type I MPs? Their

orientations seem contrary to the natural direction of

movement. Goder and Spiess [26��] hypothesized that

all signal sequences enter the translocon N terminus first,

meaning that type II signal anchors must reorient in the

course of translocation. To study this hypothesis, Goder

and Spiess used a collection of chimeric model type II

signal anchor proteins with C-terminal sequences ranging

in length from 100 to 580 residues. They found that the

percentage of proteins with translocated C termini

increased linearly from about 20% for a C-terminal length

of 100 residues to a plateau of about 55% for C-terminal
Current Opinion in Structural Biology 2004, 14:397–404
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Figure 2

Structure of the translocon (SecYabg) from M. jannaschii (Mj), determined by van den Berg et al. [13��] to a resolution of 3.2 Å. The images

shown are based upon PDB coordinates 1RHZ and were prepared using DS ViewerProTM 5.0 by Accelrys, Inc. No nascent peptide is seen

in the structure, which is assumed to be in the closed state. (a) General structural features. The top view (along the membrane normal) shows

the inverted ‘U’ arrangement (broad red and black line) of TM helices 1–5 (green) and TM helices 6–10 (orange). An external connecting link

between the two sets of helices and the TM helix of the g subunit at the back of the structure largely prevent contact of lipids with the a-subunit

helices from the backside. The unrestricted front of the subunit provides the only possible opening into the bilayer. However, in the closed state

shown here, the opening is protected by TM helices 2 and 7 (light green and light orange, respectively), which form the edges of the so-called

Current Opinion in Structural Biology 2004, 14:397–404 www.sciencedirect.com
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lengths of 300 or more residues. Is this effect due to the

length of the C-terminal sequence or to time (nascent

polypeptides elongate at a constant rate of about five

amino acids per second)? This question was answered by

administering the reversible elongation inhibitor cyclo-

hexamide, which caused the edge of the plateau to shift

downward to C-terminal lengths of 150 residues and the

percentage of C termini translocated to increase to about

80 from 55. The bottom line from the studies is that time

rather than C-terminal length is the actual variable and

that about 50 s are required for reorientation (inversion) of

the signal anchor.

Additional studies showed that the inversion rate

depends upon the hydrophobic length of the segment

and the flanking charges: short segments (16–19 leucines)

inverted faster than long ones (20–23 leucines); reducing

the charge at the N terminus slowed down inversion.

Importantly, regardless of the properties of the signal and

the consequent rate of inversion, changes in topology

were always complete in about 50 s. That is, the final

topology is fixed immutably after ~50 s regardless of

inversion rate, implying that the time required for fixing

the topology is an inherent property of the translocation

machinery.

An interesting feature of these studies is that, generally,

topology is mixed. For example, in the time-course stu-

dies described above [26��], typically ~75% of the C

termini inverted (but this can be pushed nearly to

100% by reducing the hydrophobic length and increasing

the flanking charges appropriately). Does this mean that

the topologies of some MPs can be mixed under native

physiological conditions? One tantalizing case is provided

by the recently determined three-dimensional structure

of the EmrE multidrug resistance transporter from Escher-
ichia coli [27�]. This protein appears to be a homotetramer

comprising two conformational heterodimers related by a

pseudo-twofold symmetry axis perpendicular to the cell

membrane (Figure 3b). This arrangement creates a struc-

ture with a mixed topology not previously seen in three-

dimensional structures of MPs: two of the dimers have

their N termini on the cytoplasmic side of the membrane,

whereas the other two have them on the periplasmic side

(green arrows, Figure 3b). If the crystal structure is

faithful to the in situ structure, and it may not be [28–

30], then the question arises as to how the mixed topology

could come about. One possibility is that both topologies
(Figure 2 Legend Continued) lateral gate. A short helix, TM2A, seems to a

Low-resolution cryo-EM images [7–9] of translocon–ribosome assemblies su

represent a tetrameter of SecYabg complexes. Because SecYabg apparen

tetramer would have to open into the membrane bilayer rather than into the

[coloring and views as in (a)]. A closely juxtaposed group of aliphatic residu

center. This collar may act as a seal around nascent polypeptides. The broa

cognate residues of E382 and R67/R74 in Sec61p from S. cerevisiae (Sc). T

of hydrophobic stop-transfer sequences [25��] and hence MP topology (see

through the hydrophobic collar, has a length of ~33 Å.

www.sciencedirect.com
are produced by the translocation machinery. Alterna-

tively, it could be that the mixed topology is produced

post-translationally by strong physical interactions

amongst the monomers. Our basic understanding of

MP folding will be challenged regardless of which expla-

nation is correct.

Folding in the ribosome exit tunnel
A question that bears strongly on translocon function is

the state of the nascent chain as it emerges from the

ribosome. Is the chain extended or folded? Does the

translocon receive nascent polypeptides as extended

chains or as a helices? These questions can be mean-

ingfully addressed now that high-resolution crystallo-

graphic structures of ribosomes are available (reviewed

in [31–33]). Two papers, recently reviewed [34], provide

insights, but also some confusion. Gilbert et al. [35�] have

examined by cryo-EM the three-dimensional structures

of ribosomes caught in the act (by using truncated mRNA

lacking an in-frame stop codon) of translating three dif-

ferent cytosolic proteins. By comparing these images with

control images, the authors were able to construct differ-

ence maps that revealed additional density in the exit

tunnels of stalled translating ribosomes that could convin-

cingly be interpreted as nascent proteins. The dimensions

of these densities were consistent not with extended but

rather with partially compacted chains, suggestive of

preliminary folding in the tunnel of the proteins, all of

which had b-barrel folds (Ig, Ig2 and green fluorescent

protein). Initial interpretations of ribosome structures [36]

concluded that the average tunnel diameter of 15 Å was

too small to accommodate a folded protein, but later

structural measurements suggested that the ribosome is

highly dynamic, switching between compact and looser

states with accompanying rearrangements of ribosomal

proteins [37]. This may explain how the ribosome tunnel

can provide space for nascent chain folding in the course

of translation.

Because no a-helical proteins were used in the study of

Gilbert et al. [35�], one cannot know if the compaction of

nascent proteins in the tunnel is a general phenomenon

applicable to all proteins or if MPs are handled differently

to soluble proteins. Woolhead et al. [38�] have approached

these issues by using Förster resonance energy transfer

(FRET) to examine the in-tunnel folding of TM

sequences and nascent secreted sequences. The idea

of the experiments is straightforward. Donor–acceptor
ct as ‘plug’ that closes the secretion pathway into the exoplasm.

ggested a translocon with a diameter of ~100 Å, which may

tly forms dimers by back-to-back contact, each SecYabg in a

center of symmetry. (b) Notable features of the SecY a subunit

es (mostly isoleucine) forms a hydrophobic collar (magenta) in the

d yellow-and-black line connects E336 to Q60/R66, which are the

hese residues apparently play a major role in determining the orientation

text and Figure 3). The yellow-and-black line, which passes directly

Current Opinion in Structural Biology 2004, 14:397–404
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Figure 3

Types of single TM helix MPs and the structure of the EmrE multidrug efflux transporter. (a) Three types of MPs defined according to the location

of the N terminus and the cleavability of the signal. Signals generally consist of a run of membrane-spanning hydrophobic residues flanked by

charged residues. In eukaryotes, the balance of flanking charges determines the topology of the signal. The flank with the greater positive

charge is generally on the cytoplasmic side of the membrane. Goder et al. [25��] present evidence that interactions of the flanking charges with

charged residues in the loops of SecYa/Sec61p play a major role in orienting the signal (see Figure 2). (b) Structure [27�] of the EmrE multidrug

resistance efflux transporter from E. coli shown in cartoon format with depth cueing. Image prepared from PDB coordinates 1S7B using DS

ViewerProTM 5.0 by Accelrys, Inc. The unusual feature of the structure is that the dimer-of-dimers configuration has N termini on both sides

of the membrane (green arrows). If the structure in vivo corresponds to the crystallographic structure, then one must explain the origin of the

dual topology (see text).
FRET partners were placed 24 residues apart by using

fluorescent non-natural amino acids introduced into the

nascent sequence. The FRET partners were chosen so

that they would have high FRET efficiency if a helix

formed, but low efficiency if extended. The authors
Current Opinion in Structural Biology 2004, 14:397–404
present FRET data supporting the conclusion that TM

segments form a helices in the tunnel, whereas secretory

proteins do not. At face value, the apparent lack of folding

of the secretory proteins suggests that the compaction

of soluble proteins observed by Gilbert et al. [35�] is not
www.sciencedirect.com
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a universal phenomenon. Using cross-linking methods,

Woolhead et al. [38�] found that two ribosomal proteins

could cross-link to TM segments, but not to nascent

secretory segments. This was interpreted as meaning that

these proteins were able to recognize TM segments and

thereby MPs. This raises the possibility that ribosomal

recognition of nascent TM segments might control the

translocon’s ‘operational mode’.

Conclusions
The three-dimensional structure of a protein-conducting

channel shows that SecY/Sec61 probably acts as a mono-

mer in the incorporation of TM segments into mem-

branes and that TM helix incorporation into membranes

is a result of the simple partitioning of potential TM

segments between the translocon and the membrane

bilayer. The translocon helps establish MP topology

through direct electrostatic interactions of some of its

charged residues with flanking charges of stop-transfer

sequences. Biochemical investigations of the kinetics of

TM helix incorporation suggest that all stop-transfer

sequences, regardless of final topology, enter the translo-

con N terminus first and then subsequently rearrange

over a period of about 50 s to achieve their final TM

orientation. Emerging evidence suggests that secondary

structure may be formed during the passage of the nas-

cent chain through the ribosome exit tunnel. Together,

these structural and biochemical studies lay a solid foun-

dation for an eventual detailed understanding of how the

translocon and membrane bilayer work in concert to

decipher the folding instructions embedded in the MP

amino acid sequence. This will be a fruitful area for study

in the next several years.
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